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Abstract-This paper presents a technique for the analysis of unsteady, two-dimensional diffusive heat- or 
mass-transfer problems characterized by moving irregular boundaries. The technique includes an 
immobilization transformation and a numerical scheme for the solution of the transformed equations. 
Specifically, the immobilization consists of transforming the governing partial differential equations into a 
coordinate system where the phase boundaries correspond to fixed coordinate surfaces. An example 
problem involving the solidification or melting of a finite cylinder is analyzed, and results for a range of 

conditions are presented. 

NOMENCLATURE 

specific heat capacity at constant pressure; 

position of phase boundary; 
dimensionless phase boundary position, 

H* 

initial position of phase boundary; 

dimensionless initial phase boundary 

position, = $ ; 

specific enthalpy of lower phase minus 

specific enthalpy of upper phase; 
heat-transfer coefficient to surroundings; 

modified Bessel function of first kind of 
order n; 
thermal conductivity; 
length of cylinder; 
number of radial dil%.rence increments in 

each phase; 
number of axial difference increments in 
each phase; 

radius of cylinder ; 
radial coordinate; 

dimensionless radial coordinate, = g ; 

temperature; 

T*-TI 
dimensionless temperature, = T-T ; 

2 1 

temperature at top of cylinder; 
temperature at bottom of cylinder; 
temperature of surroundings; 
fusion temperature; 

t*, time; 

t, dimensionless time, = $; 

z*, axial variable; 

Z, dimensionless axial variable, = $ 

Greek symbols 

thermal diffusivity, = -!!- . 
&’ 

L 
aspect ratio, = R ; 

Nusselt number, = 7 ; 

dimensionless fusion temperature, 

Tf-T, =-. 
T, - TI ’ 

dimensionless temperature of surroundings, 

T3 - T =-. 
T2 - TI ’ 

ratio of thermal diffusivities, = !’ ; 
u 

ratio of latent heat to sensible heat, 

AA 

Ii 
thermal conductivity ratio, = i; ; 

dimensionless independent variable, = r; 
dimensionless independent variable defined 
by equation (21); 
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dimensionl~s independent variable defined 
by equation (22); 
density; 
dimensionless independent variable, = t; 
denotes lower phase; 
denotes dimensional variable. 

NUMEROUS technical problems involve the movement 
of a phase boundary induced by the diffusion of energy 
or mass. Common examples involving the conduction 
of heat are the solidification of castings, the thawing of 
permafrost, the freezing of foods, and the aerodynamic 
heating of missiles. Correspondingly, processes such as 
the dissolution of bubbles or solid particles and the 
tarnishing of metal surfaces involve the molecular 
diffusion of mass. In general, the nonlinearity associated 
with the moving phase boundary significantly compli- 
cates the analysis of this class of problems. 

The vast majority of theoretical work in this area has 
been limited to the analysis of one-dimensional trans- 
port. Several comprehensive surveys of the mathe- 
matical techniques that are available for the analysis of 
the one-dimensional case have been published [1,2], 
and a further review of this area will not be given here. 
The present study is concerned with the solution of 
moving boundary problems where two spatial co- 
ordinates are needed to characterize the location of the 
phase boundary. 

At the present time, only a limited number of 
methods are available for the solution of two-dimen- 
sional moving boundary problems. In most cases, the 
emphasis has been placed on a general class of two- 
dimensional solidification or melting problems, and the 
following discussion is thus given in the context of this 
kind of system. Because of the complexity of the 
unsteady two-dimensional case, most of the available 
solution techniques are numerical rather than ana- 
lytical in nature. In general, these numerical solution 
methods can be grouped into two basic classes: the 
fixed grid-mo~ng boundary technique and methods 
where the latent heat of fusion is directly incorporated 
into the conventional unsteady-state heat-conduction 
equation and the problem is reduced to a single phase 
heat transfer analysis. 

The general class of fixed grid methods is typified by 
the analyses of Tien and Wilkes [3], Lazaridis [4], and 
Springer and Olson [S]. These investigators solved 
two-dimensional unsteady-state heat-transfer problems 
by considering the movement of the phase interface 
through a fixed finite-difference grid. Standard finite- 
difference formulations could then be imposed for all 
nodal points sufficiently far from the interface, and 
special numerical schemes were devised for points in the 
vicinity of the moving phase boundary. Once these 
finite-difference approximations were formulated, con- 
ventional numerical solution methods were employed 
to describe the temperature field and to determine the 
location of the phase interface. 

In the second class of solution methods, the presence 

of the moving phase boundary is not considered ex- 
plicitly in the finite-difference solution. In the technique 
presented by Doherty [6], the onset of the phase change 
in any cell of the finite-difference grid is indicated when 
the temperatures at two successive time increments 
straddle the phase transition temperature. When the 
onset of melting is detected, the cell temperature is set 
equal to the melting temperature, and the energy input 
to the cell from nei~boring cells is accumulated into 
an internal energy variable. The cell temperature is not 
permitted to exceed the transition point until the 
accumulated energy is equal to the latent heat of the 
material in the cell. Also in this class of methods, 
Hashemi and Sliepcevich [7] have presented an im- 
plicit alternating direction technique in which the heat 
of fusion is accounted for by an effective heat capacity 
which is introduced by assuming that the phase tran- 
sition occurs in a finite temperature interval. Finally, 
Allen and Severn [S] have presented an analysis in 
which the heat of fusion is treated as a heat of generation 
term in the energy equation. 

The two broad classes of solution techniques dis- 
cussed above represent the most prevalent approaches 
for solving multidimensional unsteady-state heat-con- 
duction problems where a phase change occurs. 
However, several other methods have also been pro- 
posed. Poots [9] used a weighted residual technique to 
consider the problem of solidification of a liquid square 
initially at its melting temperature. The solution was 
carried out by introducing assumed functional forms 
for the general shape of the interface and for the 
temperature distribution in the region. Sikarskie and 
Boley [IO] devised a method of converting the 
boundary value problem with a partial differential 
equation into a set of integro-differential equations 
which could be solved by numerical or series methods. 
Finally, Rathjen and Jiji [ll] obtained a solution to 
heat conduction with melting or freezing in a two- 
dimensional corner by treating the latent heat as a 
moving heat source. A nonlinear, singular integro- 
di~erential equation was derived for the interface 
position and an approximate solution was obtained. 

Of the methods listed above, those based on standard 
finite-difference techniques are the most promising 
since they are applicable to a wide variety of diffusion- 
controlled moving boundary problems. As in the case 
of all methods of solution, the major difficulty inherent 
in the finite-difference solution of two-dimensional 
phase change problems is that associated with the time 
dependency and irregular nature of the surface which 
constitutes the phase interface. Resolution of this 
difficulty forms the basis for the present paper. 
Specifically, it is apparent that an immobilization of 
the phase boundary by an appropriate coordinate 
transformation would greatly reduce the difficulties 
associated with the solution of the problem. 

Immobilization techniques have been developed and 
widely employed in the analysis of one-dimensional 
moving boundary problems [l]. In this paper, a 
coordinate transformation for the immobilization of a 
two-dimensional moving boundary is proposed. The 
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basic philosophy of this approach is to simplify the 
numerical analysis by tr~sfor~ng the irregular 
moving boundary to a ftxed boundary of simple 
geometry at the expense of complicating the governing 
partial differential equations. Since standard finite- 
difference techniques can readily handle complex 
partial differential equations but are difficult to adapt 
to moving and/or irregular boundaries, the transfor- 
mation technique casts the problem into a form which 
utilizes the strength of finitedifference techniques while 
at the same time ~~mizes their shortco~ngs. 

In order to demonstrate the application of this 
method, a test problem involving the solidification or 
melting of a two-phase finite cylinder is analyzed, and 
results for a range of conditions are presented. This 
particular example problem was chosen for several 
reasons : 

(a) The final steady-state position of the interface for 
this case can be estab~sh~ by an analytical solution 
for the special condition when the thermal conduc- 
tivities of the two phases are equal. Consequently, the 
accuracy of the developed technique can be checked at 
the steady-state limit. 

(b) With a change in the initial conditions and other 
parameters, the general nature of the problem can be 
significantly altered so that the developed technique 
can be tested over a wide range of conditions. 

(c) AIthough the example problem is sufficiently 
flexible to permit examination of the developed method, 
it is not unduly complex and the results can be simply 
presented. 

FORMULATION OF EXAMPLE PROBLEM 

The problem chosen for illustrative purposes involves 
two-Dimensions unsteady-state heat conduction in a 
cylindrical container of length L and radius R. This 
container is filled with a material which exhibits a 
liquid-solid phase transition at a fusion temperature, 
7”, Initially this system is at a steady-state condition 
with the upper surface of the cylinder maintained at 
the temperature 7” and the lower surface at T2; the 
outer curved surface is thermally insulated. Under these 
conditions, there is s~rnet~ in the ~rnu~al direction 
and a schematic diagram of a cross section of the 
cylinder is presented in Fig. 1 (a). If the fusion tempera- 
ture, 7”, lies between Tr and T2, the cylinder initially 
contains both liquid and solid phases with a phase 
boundary at z* = E&J. In the following development, 
lower phase quantities will be denoted by a bar (-). At 
time t* = 0 the insulation is removed and the wall of 
the cylinder is exposed to a surrounding phase which is 
maintained at the temperature T3. Depending on the 
relative value of T3 with respect to the fusion tempera- 
ture, Tf, the material inside the cylindrical container 
will start to solidify or melt and the phase boundary 
H*(t*, r*) will begin to move. 

In the mathematical analysis of this problem the 
following assumptions are employed: 

(a) All physical properties of both solid and liquid 
phases are constant. 

,? =o 

r=O T, r =I 

HO 
H(t,r) 

t2 

21 

‘I 

t:0 

Tf 

Phase baundory 
changes with 
time 

c *L 
H( t,r) 

Tf 

Phase boundory 
is immob~iized 
ot this pasition 

T2 

04 

FIG. 1. Schematic diagram of example problem. (a) 
Conventional cylindrical coordinate system (r, z, t). 
(b) Immobilized coordinate systems (A, <, T) and 

(4 E 4. 

(b) The densities of solid and liquid phases are equal. 
Hence, it is reasonable to assume that the velocity is 
zero everywhere in the system. 

(c) Gravitational effects can be neglected so that the 
system is effectively at constant pressure. Thus, the 
temperature is invariant on the solid-liquid interface. 

(d) The container consists of very thin walls and its 
thermal properties can be neglected. 

(e) Heat exchange between the cylinder and the 
surroundings can be represented by a constant heat- 
transfer coefFi&nt, h. 

Application of appropriate conservation laws and 
jump conditions in conjunction with the above assump- 
tions yields the following dimensionless set of equations 
for this heat conduction-controlled moving boundary 
problem : 

Upper phase energy equation 

8T dzT l’r3T @T 
x=-+;z+ iv -l-G’ (1) 
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Lower phase energy equation 

aT ( ST i aT a2T 
at=i g+y.$r+3. > 

Jump condition for energy 

(2) 

Initial conditions 

different transformations for the upper and lower 
phases. In general, the upper phase can be transformed 
from the (r, z, t) cylindrical coordinate system to a new 
system (A, 5, t) where 5 is an appropriate function 
t(r, z, t) and L = r, 7 = t. Similarly, the lower phase can 
be transformed to the system (A, t, 7) where t can be a 
different function of r, z and t. For transformations of 
this general form, equations (l), (2) and (3) are con- 
verted to the following set of equations: 

H(0, r) = HO = &, O<r<l (4) 

T(O,r,z)=S$_ OGr<l, OGz<H,, (5) 
0 

T(0, r, z) = (6 - 1) 
z--B 

( > 
__ 
Ho-B 

+1, 

0 < r < 1, H, < z =$ f?. (6) 

Upper phase boundary conditions 

T(t, r, 0) = 0, 0 ,< r < 1 (7) 

T[t, r, H(t, r)] = 6, 0 < r < 1 03) 

= -y[T(t, 1, ~)-a], 0 < z < H(t, 1) (9) 

= 0, 0 < z < H(t, 0). (10) 

Lower phase boundary conditions 

T(t, r, B) = 1, 0 ,< r < 1 

T[t, r, H(t, r)] = 6, 0 < r < 1 

(11) 

(12) 

(13) 

(14) 

Boundary conditions for jump equation 

(15) 0 

If 6 E, 
aH #--a) 
- = ___ 

’ 
r=l. (16) 

If 6 < E, 
aH YV-6) 
z= iaT, , r=l. (17) 

lc az ==H L ) 
Numerical solution of this coupled set of equations 

is complicated by the fact that the phase boundary will 
move with time and the interface surface will not, in 
general, correspond to a coordinate surface in the 
conventional cylindrical coordinate system. The com- 
plexity of the numerical analysis can be greatly reduced 
if the problem is transformed to a coordinate system in 
which the phase boundary is stationary and coincides 
with one of the coordinate surfaces. There are numerous 
specific transformations which show these desired 
characteristics, and there are some advantages in using 

It is clear that equations (18) and (19) are parabolic 
everywhere in their domains of definition. 

The specific transformations utilized in this study are 
the following: 

+Z 
H(t, r) 

(21) 

Z-B t = ___.. 
H(t, r) -P 

The general characteristics of these transformations are 
presented in Fig. l(b). Clearly, the problem is trans- 
formed to a coordinate system where the phase 
boundary is defined by the surfaces 5 = 4 = 1. Utili- 
zation of this coordinate transformation in equations 
(4)-(17) and equations (18)-(20) gives the following set 
of equations which completely describes the illustrative 
problem : 

Upper phase energy equation 

dT a2T 1 dT 25aH a2T 

a7 anz+naEmdran 

(23) 

dT 
+ay 

25 
[ H2 

aH 
0 an 

2 5 d2H 5 aH 5 aH 
-Hs-zii/Z+H>; I 

Lower phase energy equation 

1 aT a2T i aT 2F aH a2T 

FX=ZF+~;?~-H-~ a3, atan 

4 aH f aH (24) 
l(H-fi)%+l(H-B)x 1 
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Jump condition for energy 

Initial conditions 

H(0, a) = 
Pa 

6+~-~rcS' 
0<1<1 (26) 

7-(0,&l) = s<, 0 < a < 1, 0 < 5 < 1 (27) 

7’(0,1,~)=(6-l)g+l, 0<1<1, O<f<l. (28) 

Upper phase boundary conditions 

T(?, a, 0) = 0, 0 < 1 < 1 (29) 

T(r, 1,l) = 6, 0 < I < 1 (30) 

$&-$(T-e), d=l, 0<5<1 (31) 

C?T 

( > 
- 
an >.+ 

=o, O,<{<l. (32) 

Lower phase boundary conditions 

T(t, 1, 0) = 1, 0 < I < 1 (33) 

T(r, a, 1) = 6, 0 < a < 1 (34) 

F aTaH aT y _ 
--------(T-E), 1=1, O<f<l (35) 
H-8 at aA an K 

=o, O,<f<l. 

Boundary conditions for jump equation 

aH 

0 
- 
an i=o=o. 

If 6 > E, 
aH HY@-4 

) 1=1 

(36) 

(37) 

(38) 

If 6 < E, (39) 

FINITEDIFFERENCE SOLUTION OF 

EXAMPLE PROBLEM 

The finite-difference analysis of the example problem 
involves consideration of two parabolic, second-order 
equations, equations (23) and (24), and a first-order 
differential equation, equation (25). These equations 
are more complex than the equations of the original 
problem formulation, but they can be used with regular, 
fixed finite-difference grids in both upper and lower 
phases. Central differences were used for all spatial 
derivatives and backward differences for all time 
derivatives, so that implicit forms of all of the difference 
equations were obtained. Since equations (23) and (24) 

explicitly include the boundary position, it is not con- 
venient to utilize an implicit alternating direction 
method to solve for T and r Therefore, it was necessary 
to employ iterative methods in the solutions of the 
finite-difference forms of equations (23) and (24) in 
addition to the iterative scheme used to solve the 
difference equation derived from equation (25). 

Once the location of the phase boundary and the 
temperature arrays were set according to the initial 
conditions, equations (26)-(28) the sequence of com- 
putations repeated over successive increments of time 
(7) was as follows: 

(a) Solve for a new temperature distribution in the 
upper phase consistent with the current boundary 
position using the implicit difference form of equation 
(23). New values of temperature are calculated along 
each line in the radial (1) direction by utilization of a 
Gaussian elimination method to solve a tridiagonal 
matrix system. 

(b) Repeat step (a) until the temperature array in the 
upper phase has converged. 

(c) Solve for a new temperature distribution in the 
lower phase consistent with the current boundary 
position using the method detailed in step (a) and an 
implicit difference form of equation (24). 

(d) Repeat step (c) until the temperature array in the 
lower phase has converged 

(e) Solve for a new boundary position consistent 
with the current temperature arrays using the implicit 
difference form of equation (25). This step involves an 
iterative scheme since equation (25) is nonlinear in H. 

(f) Repeat steps (a)-(e) until all arrays have con- 
verged for the new value of 7. Each time step involves 
three iterative schemes imbedded inside an overall 
iteration loop. 

A variable time step was used in the solution so that 
smaller time steps could be utilized at early times when 
the temperature gradients are large. For a typical run, 
thirty spatial increments were used in the radial 
direction and fifteen in each phase in the axial direction. 
The smallest time step used was 2.5 x 10e5. Mesh 
sizes for the radial, axial, and time variables were varied 
in the usual manner in order to establish the con- 
vergence of the finite-difference solution to the solution 
of the differential equations. 

No stability criterion was established for the implicit 
difference equations, but no difficulties were en- 
countered for all time steps utilized in this study. 

ANALYTICAL STEADY-STATE SOLUTION 

When the thermal conductivities of the solid and liquid 
phases are equal (K = I), the steady-state limit of the 
transient problem reduces to the analysis of steady 
conduction in a homogeneous cylinder. For this special 
case, the steady temperature field is described by the 
following set of equations: 

(40) 

T(r, 0) = 0, 0 < r 6 1 (41) 
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The solution to these equations is simply 

where 

Equation (45) can be used to locate the steady-state P 
position of the phase interface by determining the locus d 

of points where the temperature is equal to the 3 
dimensionless fusion temperature 6. 2 

RESULTS AND DISCUSSION 

Several vacations of the example problem were solved 
in order to demonstrate the applicability of the im- 
mobi~zation tr~sformation and the associated finite 
difference method developed in this paper. The 
parameters in the set of equations describing heat 
transfer in the cylinder are /I, y, 6, E, {, 8, and K. In all 
solutions that were obtained, /I, 8, and E were held 
constant, and thus a cylinder of fixed geometry and 
fixed fusion and ambient tem~ratures was considers. 
ConsequentIy, the effects of the thermal properties of 
the phases (5 and K), of the Nusseh number (y), and of 
the ratio of latent to sensible heat (e) on the movement 
of the phase boundary were investigated. 

Results for five cases are presented in this paper, and 
the values of the parameters used in these cases are 
listed in Table 1. These results describe either melting 
or solidi~~tion in the cylinder, de~nding on the 
relative values of Tr and T2. For TZ > Tr , the lower 
phase is liquid and, since T3 > T,, melting of the upper 
phase takes place. For TX > T,, the lower phase is solid 
and, since T3 <: I”, freezing of the upper phase occurs. 

One test of the accuracy of the solutions obtained by 
the present method is a comparison of the steady-state 
boundary position calculated from a finite-difference 
solution with that calculated from the analytical 

Table 1. Characteristics of cases investigated 

B I,0 I.0 3.0 0.5 
C 2.0 2.0 1.5 1.5 
D 2.0 2.0 3.0 1.5 
E 2.0 2.0 4-5 1.5 

*For cases A-E the following parameters were 
used: M = 30, N = 15,6 = 0.5, E = 0.75. B = 1.0. 

i Y B 
l--l__“_-“-_ solution (equation (45)) for the case K = 1. This com- 

1.0 3.0 1.5 parison is given in Table 2 for case A. The difference 
between the analytical and ~nite~ifferen~ solutions is 
approximately@5 per cent at all radial positions except 
r = 1 where the discrepaucy is about 1 per cent. This 
excellent agreement provides one indication of the type 
of accuracy that might be expected from the proposed 
method. 
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FIG. 2. Boundary position for case A. 

I 

FIG. 3. Boundary position for case B. 

Finite-difference results for cases A-E are presented interface. In Fig. 7, the position of the phase boundary 
in Figs. 2-6 in terms of the position of the phase at the outer cylindrical surface, H(r = l), is plotted as 
boundary, H(t,r). All five cases considered show the a function of dimensionless time for cases A and B for 
same qualitative trends. The phase boundary move- which all parameters except 0 are identical. The steady- 
ment is of course appreciable initially only near r = 1, state boundary position is approached significantly 
but significant boundary displacement is eventually faster for case B for which 0 has one-third of the 
initiated throughout the cylindrical region. The velocity value used in case A, but the limiting boundary surface 
of the phase interface decreases monotonously with is the same for the two cases. The above behavior is 
time as the steady-state position is approached what would be expected from consideration of 
asymptotically. equation (3). 

It is of some interest to examine how 0, [ and K, the 
thermal property ratios, and y, the Nusselt number, 
affect the velocity and steady-state position of the phase 

In Fig. 8, the time variations of H (r = 1) for cases A 
and D are compared. These cases are identical except 
for the thermal property parameters, [ and K. Since the 

0 25 

o.3so 0.1 ' 0.2 ' 0.3 ' 04 ' 05 ' 0.6 ' 07 ' 09 ' 09 ' 

I 

FIG. 4. Boundary position for case C. 

H 

0.25 

0’350 01 I 02 I 0.3 I 0 I 4 0 I 5 0 I 6 0.7 I 0609 I I I 
,- 

FIG. 5. Boundary position for case D. 

HMTVol. 18,No.7/8-E 
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I I I I I I I I I 
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02 03 04 05 06 07 06 09 ,O 
r 

FIG. 6. Boundary position for case E. 

0.2 

0.3 

0.3 

T 
\I 

: 

0.4 

0.4 

0,5' 

nalyticol steady- state solution 
‘ 

FIG. 7. Time variation of boundary position 
at r = 1 for cases A and B. 

densities of the phases have been assumed equal, the 
thermal properties of the phases must be identical for 
case A, whereas the heat capacities, but not the thermal 
conductivities, are the same for case D. Since the 
thermal conductivity of the lower phase for case D is 
twice that for case A, there should be generally higher 
velocities and greater steady-state displacement of the 
phase boundary for case D because of the increased 
heat transfer. The quantitative nature of the enhanced 

Of--- 

01 

0.2 

2 

s 

03 

o-4 

05 

I I I I I I 

Case D 

:---- 

case A 

I I I I I I I 
0.20 0 40 060 0.80 IO0 120 140 

t 

FIG. 8. Time variation of boundary position at r = 1 
for cases A and D. 

““Ok 

FIG. 9. Time variation of boundary position at r = 1 
for cases C, D, and E. 

heat transfer is shown in Fig. 8, where it can be seen 
that the final position of H (I = 1) for case D is closer 
to the top of the cylinder than the steady-state position 
for case A. 

Cases C, D, and E show the effect of increasing the 
Nusselt number, y, on the movement of the phase 
boundary. Again, as can be seen from Fig. 9, the 
increased heat transfer between the cylinder and the 
su~oundings gives greater ultimate displa~ent of the 
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0.6- 0.6 

I.0 I I I I I I I I II 
0 0.1 0 2 0.3 04 0 5 0.6 0.7 0.6 0.9 I.0 

I 

FIG. 10. i coordinate lines at steady state for case E. 

solid-liquid interface and a faster approach to the 
steady-state limit. 

Finally, we consider a graphical comparison of the 
transformed coordinate systems, (A, 5) and (A, f), with 
the conventional cylindrical coordinate system (r, z). 
The surfaces denoting angular position are of course 
the same in the two coordinate systems. Such a com- 
parison is given in Fig. 10 for case E at the steady-state 
limit. In this figure, the 1 coordinate lines, the inter- 
sections of the { or t surfaces with any plane repre- 
senting constant angular position, are shown imposed 
on a cylindrical coordinate system for various values 
of 5 and f. Since the surfaces 5 = constant and f = 
constant are not parallel to the planes z = constant, 
the I coordinate lines show significant curvature, in 
contrast to the r coordinate lines which are parallel rays 
passing through the z axis. The curvature of these 
coordinate lines is of course directly dependent on the 
curvature of the phase interface, the coordinate line for 
the surfaces r = f = 1. 

The boundary immobilization technique proposed in 
this paper has been illustrated by examining an un- 
steady heat conduction problem, but it is reasonable to 
expect that the principles can be applied to a wide 
variety of systems of different geometries and charac- 
teristics. For example, the analysis of moving boundary 
problems involving the equations of motion coupled 
with heat or mass transfer, such as in the study of forced 

or natural convection phenomena, could presumably 
be simplified by this technique. Indeed, mapping of 
time-dependent and/or irregular boundaries into !ixed 
and/or regular surfaces should usually result in signi- 

ficant aimplilications in the numerical solution of 
partial differential equations since boundary conditions 
are expressed in the most convenient form for numerical 
analysis. Finally, it should be noted that the immobili- 
zation transformation could be modified to permit 
flexibility in the distribution of grid points for the most 
accurate representation of the differential equations. 
Such transformations have been employed in con- 
junction with one-dimensional immobilization trans- 
formations [12], and they prove to be very useful in 
cases where large gradients exist in certain regions of 
the domain of interest. 
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ETUDE ANALYTIQUE DES PROBLEMES BIDIMENSIONNELS 
DE DIFFUSION CONTROLEE AVEC FRONTIERES MOBILES 

R&um&L’article prCente une mtthode pour l’&ude analytique de probltmes bidimensionnels instation- 
naires de transfer? de chaleur ou de masse par diffusion, caractCrisb par des front&es irr&ulitres en 
mouvement. La technique utilisb comprend une transformation qui permet d’immobiliser les fronti&s 
et un schtma numtrique pour la r&solution des $uations transform&es. Dans le cas prbent, la technique 
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d’immobilisation consiste a transformer les equations fondamentales aux d&iv& partielles par un 
changement de coordonnees dans lesquelles les front&es de phase correspondent a des surfaces coor- 
don&s fix&s. LJn exemple de problemme est analyse qui fait intervenir la solidification ou la fusion dun 

cylindre de longueur finie, les rtsultats sont prbentes pour divers conditions. 

ANALYTISCHE LJNTERSUCHUNG ZWEIDIMENSIONALER 
DIFFUSIONSVORGANGE MIT VERjiNDERLICHEN GRENZEN 

Zusammenfassung-Der Aufsatz beschreibt die analytische Behandlung des instationlren, zweidimen- 
sionalen Warme- und Stofftransports bei veriinderlichen Grenzen. Das Verfahren umfagt Trans- 
formationen und ein Schema zur numerischen Losung der transformierten Gleichungen. 

Spezielle der Ubergang in den Zustand der Unbeweglichkeit besteht aus der Transformation der 
maggeblichen partiellen Differentialgleichung auf ein Koordinatensystem, in dem die Phasengrenzen 
festen ObertIiichen entsprechen. Ah Beispiel werden der Erstarrungs- oder Schmelzvorgang eines Zylinders 

endlicher Lange analysiert und Ergebnisse fur unterschiedliche Bedingungen mitgeteilt. 

AHAJlM3 ABYMEPHbIX 3AAAY 4M@@Y3WM C ABB~YIIIHMZIC~ I-PAHHLIAMH 

fiHUO~ilUHll - B CTaTbe IlpeACTaBJIeHa MeTOAHKa aHaAH3a HeCT8~HOHapHbIX ABYMe,,HblX 3aAa’I 

AH’$‘$)‘3HOHHO~O TelTJlO- HJlW MaCCOlIepeHOCa C ABHXQ’IWMHCR HepWyJUIpHbIMH rpaHHnaMrr. Mero- 
AqHKa BKmxaeT B ce6r IIpeO6pa30BaHHe HMM06HnH3awiH H rHcneHnyIo cxebfy Ann pememiff ripe- 
06pa3OBaHHbIx YpaBHeHUft. B YaCTHOCTH, kiMM06HnH3auHJi COCTOHT B3 lTpeo6pa3oBaHH~ OCHOBH~IX 

AH’$~epeHlW.JIbHbIX YpaBHeHKti B YaCTHbIX llpOH3EWAHblX B KOOPAHHITHYlO CHCTeMY, rAe QaHHubI 

@a3 COOTBeTCTBylOT &iKCHpOBaHHbIM KOOpAHHaTHbIM IIOBGpXHOcTSIM. B KaYeCTBe IIpaMepa aHat’lH3Si- 

pyeTCSi 3aAaYa 3aTBepAeBaHEiK UJIW rIJIaBJIeHH5I WUIHHApa KOHViHOii AJ-lHHbl, lIp($ACTaBAeHbI p3yIlb- 

TaTbI AJIR PRAa )‘CJIOBHi. 


